cpsc 233 parsing assignment rubric

	[image: image1.png]

[image: image2.png]

[image: image3.png]

	Parsing Assignment Rubric
2006
	Arithmetic expression calculator / evaluator: traditional calculator / Polish Postfix converter/evaluator
Standard/Benchmark:
Competence: The following guide describes how you might assess your own work. The official marking will only test the program's function. The grade that will be recorded for you on this assignment will be determined by its function.
Performance Task:
Brief problem statement:
This assignment involves creating an application in Java that:
 includes the use of several separately compiled classes
 demonstrates the use of composition and encapsulation
 implements parsing algorithms that read and interpret statements defined by a formal grammar
 implements recursion
 the grammar or algorithm should include recursive definitions and/or recursive evaluation

These classes should incorporate the use of encapsulation and composition, and something that can be defined as an abstract data type.

The use of PACKAGES is still not required, and will not be considered an asset in this application.
The following requirements apply to all fourth assignments.
If you choose to submit a program that does not have a grading scheme described, the table below lists the elements that must be demonstrated.

This third assignment will be assessed as 'A', 'B', 'C', 'D' or 'F', with possible pluses or minuses.
This rubric is a guide: no further detailed description will be provided for this portion.
This rubric is meant to be used in conjunction with the general programming rubric.
Medium sized program not requiring inheritance.

	Performance Element
	Master
	Advanced
	Developing
	Beginner
	Insufficient

	Documentaion
	n/a
	Documentation includes UML(ish) class diagrams.
	Documentation includes some form of class diagrams.
	Attempt at diagramitic representation of classes and relationships.
	Not even an attempt.

	Abstract Data Types: Tokens
	n/a
	Defines token class that can handle and distinguish all types of tokens.
	Uses separate structures for operators and operands.
	Attempt at defining token type, but inconsistent and only handles constants and operators.
	Does not use a token class. Uses chars and ints or something similar.

	Abstract Data Types: Lists
	Uses queue to build postfix expression; stack for evaluation. Both structures grow in capacity as necessary.
	Uses queue to build postfix expression; stack for evaluation. Structures may be fixed in size.
	Uses two stacks; first stack is reversed before proceeding to evaluation phase. Structures are fixed in size.
	Uses two stacks; but breaks ADT conventions. Structures are fixed in size.
	Does not implement proper stacks or queues. May use 'unprotected' arrays or lists.

	grammars
	Program design clearly implements the formal grammar that defines the "language" to be parsed. Documentation includes clear definition of the grammar as implemented.
	Program design clearly indicates the implementation of a formal grammar that defines the "language" to be parsed.Code implements grammar. Documentation may include 'crude' or simple definition of the grammar implemented.
	Program design indicates some degree of implementation of a formal grammar that defines the "language" to be parsed.
	Documentation or design 'alludes' to a formal grammar, but no clear connection can be made between a formal grammar and the algorithm as implemented.
	

	Arithmetic Expression Parsing
	Handles "()" recursively. Correctly identifies recursive element of the grammar and implements them according to the grammar. Program is robust: does not crash or bail, correctly identifies invalid input; is able to recover from some forms of invalid input.
	Evaluates the Postfix Expression. Handles empty expressions. Design as implemented handles valid input as well as correctly identifying many errors. Sort of handles recursion.
	Handles a valid AE (without "()") Design handles valid input. Program does not crash on some invalid input, but may simply terminate. May treat all invalid expressions the same.
	Handles expressions where precedence doesn't matter. Design handles valid input within a restricted definition (i.e. no spaces allowed, or exactly one space required between tokens, etc.)
	Handles simplest form of expression consisting of number operator number.

	Expression evaluation and Precedence
	n/a
	Expressions evaluated correctly. Proper precedence followed always.
	Sometimes follows proper precedence. May round after division.
	Always follows left-right operation. Division doesn't round.
	Always follows right-left operation, or or inconsitently follows precedence orders.

	Output
	n/a
	Prints both the original and the Polish Postfix version of the expression. Prints answer to expression.
	Prints the Polish Postfix version of the expression. Prints answer to expression.
	Echoes input. Prints answer to expression.
	Prints only answer to expression.

	Error Handling
	Prints meaningful diagnostic messages. Able to recover from some errors and continue parsing.
	Handles invalid expressions (recognizes and doesn't blow up). Program "bails" when error found.
	n/a
	n/a
	n/a

	Testing
	1. 1 + (2) ;

2. 1 + 2 + 3;

3. 1 + 2 - 3;

4. 1 + (2 * 3);

5. 1 (* 3) + 2;

6. (1 + 2) * (3 + 4);

7. ((1 + 2) * 3 - 4;

8. 8 / (4 / 2);

9. 5 + (6 - 7);

10. (3 (2 + 1));

11. ((7 + 6) * (4 + 2));

12. ((7 = 6) * (4 + 2);

13. (3 * (2 + 1));
14. (2) + (2);
	1. 1 + ;

2. + 2 + 3;

3. 1 + 2 ^ 3;

4. 1 ++ 2 * 3;

5. 1 * 3 + 2

6. 8 / 4 * 2;

7. ;
8. 4 ++ 6;
9. 2 7 3;
	1. 1 + 2 * 3;

2. 1 * 3 + 2;

3. 1 + 2 * 3 + 4;

4. 1 * 2 - 3 *4;

5. 1 + 2 * 3 - 4;
	1. 1 + 2 ;

2. 1 + 2 + 3;

3. 1 + 2 - 3;

4. 8 / 4 / 2;

5. 4;
	1. 1 + 2;

2. 3 - 2;

3. 4 * 5;

4. 20 / 3;

	

	General Grading Explanation:

	A
	4.0
	Exemplary
	Master
	goes well beyond the requirements as laid out in the assignment specifications.

	B
	3.0
	Exceeds requirements
	Advanced
	goes beyond the basic requirements as laid out in the assignment specifications in ways that add value and meaning to the solution within the context of the objectives for this course.

	C
	2.0
	
	Developing
	Meets requirements as laid out in the assignment specifications.

	D
	1.0
	Attempt
	Beginner
	submission suffers from serious or un-ignorable flaws or difficulties.

	F
	0.0
	Fail
	
	

	Assessment: Letter Grade Mappings

	A = Exemplary
	B = Excedes Minimal Requirements
	C = Meets Minimal Requirements
	D = Sub-Standard
	F = insufficient

	
	A
	A-
	B+
	B
	B-
	C+
	C
	C-
	D+
	D
	F (reasonable attempt)
	not submitted

	GPA
	4.0
	3.7
	3.3
	3.0
	2.7
	2.3
	2.0
	1.7
	1.3
	1.0
	0.5
	0.0

	/50
	50
	46
	42
	38
	34
	30
	25
	22
	17
	13
	6
	0

	
	100
	92
	84
	76
	68
	60
	50
	44
	34
	26
	12
	0

[image: image4.png]

Updated: March 4, 2006 11:02 AM

[image: image5.png]

