A Comparison of Constructivist VS Behaviourist Assignment Sets
for CS102

J. R. Parker
Digital Media Laboratory
Department of Computer Science
University of Calgry
2500 Unversity Dr N.W.
Calaary, Alberta, Canada T2N 1N4
1 403 220 6784
parker@cpsc.ucakgy.ca

Abstract

Two approaches to teaching Computer Science are com

pared, using tw sets of assignmentsvgin to distinct
CS102 lecture sections during the same semdstercom-

Katrin Becker
Computer Science Education Group
Department of Computer Science
University of Calgry
2500 Unversity Dr N.W.
Calaary, Alberta, Canada T2N 1N4
1403 220 6784
becler@cpsc.ucakyy.ca

was unfortunate, ut it did allowv us to conduct a simple
comparison of the methods used in the tmurses; specifi-
cally, the assignments\gin to the students will be assessed
and compared.

plexity and efort represented by the solutions is compared Students submit their assignment solutions using an on-line

using softvare engineering metrics Mg a measure of the
effectiveness of the tavassignment sets.

Keywords

CS102, computer science instruction, constvisttiearn-
ing
1 Introduction

Constructvism is a learning model that is becomirgryw
popular in post secondary institutions in North America. It
maintains that learning must be &etiand is not just about
the discwery of facts [13,3,4]. €achers must guide the
learners in the construction of mental models. Constructi

ism is about helping the learner construct a viable model

and the guidance is based on thevidlial learners cur-
rently existing cognitve structures. One practicabhy of
introducing constructist methods into a program is to
introduce anxgeriential learning component.

submit program, and this alled us to collect all of the
submissions as tlyevere made. The intentionas to use
standard softare engineering complity metrics to deter-
mine hav comple the solutions were, and to compare this
between the tw distinct lecture sections. Solutions that
reflect a high dgree of sophistication, compligy, and
effort represent a better education&perience, at least
according to most learning models. Learning to program is
learning to construct mechanisms awglanations[17]; the
hard problem for naice programmers is not in the con-
structs of a languageubin putting the pieces togeth&tu-
dents need to be taught about typical solutions to problems
and stratgies for using them.

'In the remainder of this paper we discuse ®ducational

models represented by thedwets of assignments: the
behaviourist model and theonstructivist model. First, pre-
vious work in this area is summarized. The assignment sets
we used are then described, and the measures applied to the

The Uniersity of Cal@ry has, for the past three years, been solutions are xplained in detail. Finally the results of the

encouraging the incorporation of axperiential learning
component in all of the undgraduate programs. In the
Winter session of 2002 an unfortunate situatiovetigped

measurements arevgn, and the conclusions supported by
the results are presented.

that alloved the Department of Computer Science to test 2 Related Work

the eficacy of this stratgy, at least in part. Because of an
administratve problem, diferent sections of the same
course - Computer Science 233, aglént to the £M
CS102 course - were alled to proceed indidually, with
no coordination of assignments, lectures, xames. This

There appears to beewy little previous work [5,6] that
involves a compleity analysis of assignments in theaw
that is being done here. There is a body ofkwon the use

of constructvism, its nature, and its agntages and disad-
vantages (E.G. [1,16]). There are other learning models,
and a body of literature concerning each one.ake, of
course, primarily interested here in learning models in
Computer Science education and their relationship to pro-
gramming assignments.

2.1 Making Quality Count in Undergraduate Education

Romer[15] establishes thatpectations should be highjtb
attainable, and should be clearly communicated at the start.
It is important that attainability bexeended to the ast
majority of the students, and not just the top feercent.

The frst year is critical for student success, and we should
respect the derse learning styles of the students from the
outset. He maintains that students must be able to synthe
size eperiences from diérent contgts in a single prob-
lem. There must also be opportunities for collab@emti
learning, and the students musvéaut of class contact
with faculty[1,16].

2.2 Simulations, Games, and Experience based
Learning

Important modern approaches to teaching focus on increas
ing the studen$ control and autonom¥experience based
learning is an aspect of constrwi$im that accomplishes
these things, and often has a straightBbmdvimplementa-
tion. Something said by B. Ruben especially stsk
home[16]:

“If we hold too closely to the idea thafedtive

education happens only when the learner learns

what the teacher teaches, this can lead us to think

that creatiity is an error”.

We belive that creatiity cannot be taught, as much as it
can be permitted, encouraged, identified, ancrded. It is
easier to be creag when the task is cleawt not restric-

tive, and when the domain of the task is clearly understood.

An accounting system auld be a territ programming
assignment if accounting were a popular hobby among six-
teen to twenty yeawmlds.

A comparison has been done thatdlves lusiness-type
assignments VSame projects for intermediate program-
ming classes [6]. The same instructor taught all classes
which involved programming in Mual Basic. The gmes
assignments were simple boames (E.G. Monopoly),
while the lusiness assignmentsviolved implementing a
student planner or an automatidealer ghicle purchase
system. Using simple compiéy measures such as lines of
code (LOC), the gme assignments were seen to be signifi-
cantly more complbe and ivolved 80% more code, on the
average, than theusiness assignments.

Two of the six construatist assignments presented hvelo
involve programming a@me. There are a number of
adwantages to this [5], including thatmes are easily
understood domains, are inherently visual arehedriven,
can be tested easilgnd are scalable. Otheowk has been
done on the use ofges as assignments [2,6].

2.3 An Objective Evaluation Strategy

Most of the assessment methods describedeaimeolve a
subjectve evaluation - @amination results and suays, for
example. Objectie results are much more fidult to
obtain. One could use a standard test on tleedlasses,

say objectrely given that the assignments werefehiént
and were graded according tarious criteria, then the
assignments that wolved the lagest amount of wrk or
effort should be an indicator of womuch vas learned. The
simple agument is that more f&frt to achiee a similar
grade implies either that more materi@samastered or that
the assignment eaged the students more thorougfligis

is consistent withyasting practice [9,15]. In the latter case,
more material \&s coered, whether or not itas ealuated
and incorporated into thenfl grade. Students must learn
problem solving skills, to constructwesolutions for them-
sehes.

For programming assignments in Computer Science, the
source code submitted can bemined and measured for
various numerical compt@y values. These are objeddi
measures of program compiy, which can be corerted

into measures of ffrt.

3 Behaviourist Model

The behsaiourist approach focuses on obssnle behe-
iour, seeking to change it. In its crudest form, Betwsm
examines the ay people react to a stimuluorFexample,

if a teacher gies a high grade, the belief is that the student
is learning and doing well. If avograde is gien, then the
belief is that the student is not learning.

There is an associated belief that theiemment, rather
than the learnedetermines what is learned. The teacher’
role is, therefore, to arrange thevennment to elicit the
desired response. The manifestation of this approacitdw
centre on behaoural objectves, such as competgrncased
education.

3.1 The Behaviourist Assignment Set

The folloving assignments are presented in the same order
in which they are encountered by the students.

There are approximately 87 imttluals submitting assign-
ments in this group.
Assignment 1 - Student Grades

This requires the student to write a program that reads in
percentage grades and prints corresponding letter grades.

Assignment 2 - A Point class

Create a class that represents a point incadimensional
Cartesian coordinate system. Mustdapecificset andget
methods, andnove, distance, andpointID. The number of
active instances are counted, and the class must be tested.
The program structure is described in detail.

Assignment 3 - Class extension

both before and after the course, and use the increase in tegtreate subclassshape, rectangle, circle, andtest from

score as a measure of educational success. This itea trif
goal/fact oriented, bt is moot in ap case as no suclkam
was gien. In aiy case there auld be ethical issues in
experimenting with a class in this manner

The method proposed here is to use pgezkiefort as a

thepoint class defined in assignment 2.

Assignment 4 - Mortgage Calculator

Using Swing to create a GUI, write a program to enter the
number of payments, principal, and interest rate and com-

measure of success. Assuming that the assignment gradgsute results of interest such as the total monthly payment,

in both classes are more or less egl@nt, a hard thing to

total interest paid, and the amortization in years.

Assignment 5 - Greenhouse simulation know (Pascal), and a®ld to re-write it in Jaa. Proper OO

Simulate a greenhouse\iag sensors for temperature, design is not emphasized. An implementation of a simple
humidity, and soil moisture. Diices (air conditionerfur- calculator is used.

nace, sprinklers) can be turned on dr Okes threads and a Assignment 2 -- First Class

GUI to simulate a period of time in the greenhouse and con-

trol of the dwices. Students are to design and implement a class thatssasv
an enhancedersion of a data type thataw used in the pre-
3.2 Why are these assignments behaviourist? vious program. This alles them to create aweclass and

incorporate it into alreadyxesting code. Spedially, they
were to replace the irger type with a Big Number class
that supports intggers at least 15 digits long.

It is not only the nature of the assignments that indicates
behaiourism hut the manner in which tlyeare presented.
In most cases the assignments are Speciifi great detail,
giving methods, their names and parameters lists, and theilssignment 3 -- Encapsulation; Simple Data Structures

functions. \éry little room is gven for enhancement or i i))
individual initiative. Write an ACSII-graphics ersion of the Bur Seasons Soli-

. . o .. taire game. Emphasis is on stacks and queues; encapsula-
These assignments are each designed to mimic aispecif 45 of objects; menu-drén design.

tiny application that is fully understood. The student is to

replicate the instructos’solution to achie top marks. Assignment 4 -- Parsing
Assignment number 5 is the nearest thing to a constistcti
assignment, Ut even here the nature of the question - whic
specifes all methods, their functions, and their detaile
implementation - is bek#urist.

h Design and write a recuva parser forxpressions. It must
d read and parse them@ession, covert it into polish postfix,
and then ealuate the pos# form using a stack.aser is
implemented from formal digfition using BNF and syntax
4 Constructivist model diagrams. Includes UML documentation.

The constructiist approach is centred onwaneaning is assignment 5 -- Inheritance

constructed by a student. Learning is thought to be an inter-_]))

nal cognitve actvity - students construct kmtedge (mod- ~ Design and implement an ASCII-graphicarsion of the
els) from their classroonxperience. The teachertole is Cenngede arcadea,me. Trn based. Graphics implemented
to facilitate and ngotiate meaning, rather than to dictate an USing ‘easycurses’ support class.

interpretation. The Uwersity of Cal@ry’s recent focus on
experiential learning in the undgaduate program is pre-
cisely in tune with this model. Implement a simple Caesar cipher in C.

Assignment 6 -- Encryption in C

4.1 The Constructivist Assignment Set 4.2 Why are these assignments constructivist?

In each case the assignment speaifon describes three These assignments can be seen tova@gtengge the stu-
versions: A, B, and C. In most cases théedént \ersions dents, a ky feature of construatism. Based on Wheatle
represent progres@ levels of complgity: the B-version [18], who describes a problem-centred approach that is
does gerything the C-ersion does with some embellish- directly applicable, tasks (assignments) should contain the
ments. This means that each increasingllgvolves more following ten attrilntes:

code (i.e. a more complesolution). Progresse levels 1. Be accessible toveryone at the start - all of the assign-
require progresgely more functionality ments hae multiple levels so thateen belev average stu-

This is not necessarily the case in the Ividrist set as ~ dents hae achigable goals. o

grading is based Igely on the presence or absence of spe- 2. Ivite students to makdecisions - the design is not com-
cific constructs as well as a subjeetiassessment of that pletely specified.

component by the maek 3. Encourage “what if” questions - the questioneaskan

Bonuses and challenges are creditetediintly from the be edended by the students.

main part of the assignment. This is done foresal rea- 4- Encourage students to use themanethods - rarely is
sons. It separates the requirements fordafrom embel- the method specified in this assignment set.

lishments suggested in order to challenge the better5. Promote discussion and communication - the open nature
students. It ensures that high grades remain attainable by aff the problems encourages discussion, sometimes con-
while encouraging>eellence in those better equipped. It ducted in the labs.

avoids the implication that all students should be willing or 6. Be replete with patterns - design patterns are discussed,
able to rise to the challenges. There were approximately 450ut students are not limited by them.

individuals submitting assignments in this group. 7. Lead somehere - the goals are clear and easily demon-
_ - strated.
Assignment 1 -- Transition 8. Have an element of surprise - especially in graphical out-

This task allevs students toaimiliarize themselks with the put, surprise is ingtable. Games he a random compo-
new language. Theare given a small program [approxi- —nentas well.
mately 1-200 lines of code] in the languageyth&eady 9. Be enjgable - the students claim it is so.

10. Be atendable - the assignment spieeifion is essen-
tially open ended.

It can be seen that this assignment set does satisfy all ten of

the abwoe attritutes.

5 Measurement of Assignment Complexity

All of the solutions to all of the assignments wereesh
and after the semesteiaw over they were @aluated. All
solutions were written in ¥a, and so the tools used to con-
duct the galuation had to wrk with this language. One
tool was written speci€ally for this work. It parsed the

Java programs and collected counts of symbol usage so that

the more compbe metrics bela could be computed.

program dificulty.
Programming Hbrt is calculated as
E=V/PL

where the symbol V represents a quantity napregram
volume, an estimate of theolume of information required

to specify a softare program; and the symbol PL is the
program level, a measure of the relation between the v
umes of the most compact representation and the actual
program.

PL=1/((ny/2)* (Ny/ny))
V=N* (LOG2n)

Essentially counts of operators and operands were made SOrjme to Code: This is an estimate of olong it would generally

that an estimate of programmindcet could be made.

take to write the program. This measure correlageg well with

What follows is a description of the metrics computed for the actual measured time to write programs, and is also an
all of the assignments from both sections of Computer Sci-established measure of progranfidifity or efort needed to write
ence 231. W chose the commonly encountered Halstead a particular program.

metrics[8], precisely because thare commonly encoun-
tered. These measures apply to systems that ardnvg
and to deelopment dbrts after coding is finished, which is
certainly the case in this instance. Halstead measiusés f
appeared in 1977 andveabeen the subject okgerimenta-
tion and assessmentez since. Thg are some of the oldest
measures of program comgity. These metrics are based
on the simple measurements:

n; = the number of distinct operators

n, = the number of distinct operands

N, = the total number of operators

N, = the total number of operands

The remaining &lues belw are calculated using the mea-
surements ahe.

This measure is a function of the programming language
use. fer Fortran, the programming time T is computed as

T=EK

where the constat depends on the languager khe Jaa
language the constant 0.@svused; this as estimated by
computing the ébrt for a sample set of programs for which
the programming time as knavn.

6 Evaluation of assignment sets

There wereife behaiourist assignments to be completed
in the winter semester of 2002, during which time six con-
structiist assignments were completed. In most cases we
compute the mearalue of a metric per assignment, as well
as the total for the semester

N: This is a measure of program length in terms of the nUM-1e most simple measures of conxitie deal with simply

ber of tolens used by the program. It is calculated as
N=N;+N,

Length: Thelength is a relationship between the &oklength N
and the wcalulary n. It is defined as:

N =ny log(nq) + nylog(ny)

Vocabulary: This is the number of distinct symbols used in the
definition of the program. It is defined as:

n=nq+n,

Lines of Code (LOC): This is a ery simple measure, and is quite
intuitive. As counted in the real code it is hard to decide some
details. Do we count comments? Is there empty space?
Obfuscated code canvewery faw lines.

This metric is computed from the number ofdak in the
program, and presumes that there should be, orvénege,
3.14 tolens per line:

- N
LoC = 3.14

Effort: Halstead definesfefrit as the total number of elementary
mental discriminations. Details can be found in Halstehdbk,
but sufice to say that this number is an accepted measure of

the number of todns, of arious sorts. Mostly the number
of operands is the decidingdtot increasing the compte

ity of the constructiist set to the point where it has almost
twice the measured complgy of the other set. Here is a
summary of what ws measured in the actual student
assignments varaged wver all assignments.

Number of tokens N: Constructiist = 481.1Behaviourist
= 368.6.

Vocabulary: Constructvist=533.8, Behdourist=315.4.
Length: Constructvist=4846.4 (total29,078.5), Beha-
iourist=2556.2 (total*2,780.8).

LOC: Constructvist=153.2 (total919.3), Behaviour-
ist=117.4 (total£86.9).

The otherderiative, comple&ity measures tell a deftive
tale.
Effort (Median)

Assignment Construetst ~ Behaviourist

1 9178.4 15946
2 18316 10102
3 29045 7669.9
4 22018 11427
5 40438 22972
6 30466

Unbiased mean 24,910 13,623

Total Effort 149,461 68,117
Time (to code, median)
Assignment Constructivist ~ Behaviourist

1 2.8328 4.9215
2 5.6531 3.1178
3 8.9647 2.3672
4 6.7956 3.527
5 12.481 7.0902
6 9.403

Unbiased mean 7.69 4.20

Total Time 46.13 21.02

We think of the metrics above as measures of work done, or
effort. Again, the constructivist set is nearly double the
effort of the behaviourist set on a per assignment basis. It is
more than twice the effort overall during the semester.

7 Conclusions

The constructivist assignment set appears to be, on the
average, about twice as much effort as is the behaviourist
set. We would expect that the students who completed this
collection would be better prepared for subsequent pro-
gramming courses, a hypothesis that we propose to test
over the next few years. Specifically, in the case of assign-
ment 1 the behaviourist assignment is more complex than
the constructivist. Thisis bourn out by all of the other mea-
sures eval uated.

All of the other metrics favour the constructivist set as
being more complex and requiring more effort. What will
be attempted next is to follow the performance of the two
groups of students through the next year, to try to see
whether there is atrend in their performance. Does the
completion of either of these assignment sets predict a
superior performance in future courses?

8 Acknowledgments

We thank D. Walters at the U of C Computer Science
Department for conducting the measurements on the
assignments, and K. Barker and L. Manzara for providing
resources and data.

9 References

[1] D. H. Andrews and L. A. Goodson, A Comparative
Analysis of Models of Instructional Design, Journal of
Instructional Development. 3:(4) , 1980. Pp 2-16.

[2] K. Becker, Teaching With Games: The Asteroids! and
Minesweeper Experience, Journal of Computing in
Small Colleges, Vol. 17 No. 2, December, 2001. Pp. 22-
32

[3] M. Ben-Ari, Constructivism in Computer Science Edu-
cation, Journal of Computers in Mathematics and <ci-
ence Teaching, 20(1), 2001. Pp. 45-73.

[4] R. Crawford, Teaching and Learning IT in English State
Secondary Schools - Towards a New Pedagogy, Educa-
tion and Information Technologies, 4, 1999. Pp 49-63.

[5] B. Dobing and D. Erbach, Building Games as Program-
ming Projects, Proc. 14 Annual Conference of the
International Academy for Information Management,
Charlotte, N.C., 1999. Pp. 298-302.

[6] B. Dobing and D. Erbach, A Comparison of Business
and Game Projects for the Intermediate Programming
Classes, Proc. 16 Annual Conference of the Interna-
tional Academy for Information Management, New
Orleans, LA., 2001. Pp. 287-296.

[7] Valerio Franceschin, Complexity -- Software Metrics,
http://sern.ucalgary.ca/Cour ses/cpsc/451/W02/Com-
plexity.html

[8] M. H. Halstead, Elements of Software Science, New
York, Elsevier North-Holland, 1977.

[9] D. L. Kirkpatrick, Techniques for Evaluating Training
Programs, Training and Development Journal, June,
1979. Pp 178-192.

[10]K. C. Lee, JavaNCSS - A Source Measurement Suite
for Java, http://www.kclee.com/clemens/javaljav-
ancss

[11]R.K. Lind and K. Vairavan, An Experimental Investiga-
tion of Software Metrics and their Relationship to Soft-
ware Development Effort, IEEE Transactions on
Software Engineering, v15, p649(5), May 1989.

[12]McCabe, Complexity Measure, IEEE Transacions on
Software Engineering, Volume 2, No 4, pp 308-320,
December 1976.

[13]S.B. Merriam and R.S. Caffarella, Learning in Adult-
hood: A Comprehensive Guide (2nd Ed), Jossey-Bass,
San Francisco, 1999.

[14]G. Miller, The Magical Number 7 Plus or Minus Two:
Some Limits on Our Capacity for Processing Informa-
tion, Psychological Review, 63., 1957. Pp. 81-97.

[15]R. Romer, Making Quality Count in Undergraduate
Education, Denver Education Commission of the
States, 1995.

[16]B. D. Ruben, Simulations, Games, and Experience-
Based Learning: the Quest for a New Paradigm for
Teaching and Learning, Smulation and Gaming, Vol
30, No. 4, Dec, 1999. Pp. 498-505.

[17]E. Soloway, Learning to Program = Learning to Con-
struct Mechanisms and Explanations, Communications
of the ACM, Vol. 29, No. 9, Sept. 1986. Pp 850-858.

[18]G. H. Wheatley, Constructivist perspectives on science
and mathematics learning. Science Education 75 (1),
1991. Pp. 9-21.

